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In some species, a crucial role has been demonstrated for the seed endosperm during germination. The endosperm has been
shown to integrate environmental cues with hormonal networks that underpin dormancy and seed germination, a process that
involves the action of cell wall remodeling enzymes (CWREs). Here, we examine the cell wall architectures of the endosperms of
two related Brassicaceae, Arabidopsis (Arabidopsis thaliana) and the close relative Lepidium (Lepidium sativum), and that of the
Solanaceous species, tobacco (Nicotiana tabacum). The Brassicaceae species have a similar cell wall architecture that is rich in
pectic homogalacturonan, arabinan, and xyloglucan. Distinctive features of the tobacco endosperm that are absent in the
Brassicaceae representatives are major tissue asymmetries in cell wall structural components that reflect the future site of
radicle emergence and abundant heteromannan. Cell wall architecture of the micropylar endosperm of tobacco seeds has
structural components similar to those seen in Arabidopsis and Lepidium endosperms. In situ and biomechanical analyses
were used to study changes in endosperms during seed germination and suggest a role for mannan degradation in tobacco. In
the case of the Brassicaceae representatives, the structurally homogeneous cell walls of the endosperm can be acted on by
spatially regulated CWRE expression. Genetic manipulations of cell wall components present in the Arabidopsis seed
endosperm demonstrate the impact of cell wall architectural changes on germination kinetics.

Angiosperms are a diverse group of seed plants that
reproduce by a double fertilization event; the first pro-
duces a zygote and the second a specialized nutritive
tissue known as the endosperm. The endosperm and the

maternally derived testa (seed coat) evolved to protect
the embryo until conditions are favorable for germina-
tion and establishment of the next generation (Rajjou
and Debeaujon, 2008; Linkies et al., 2010). Endosperm
from cereals/grasses, such as maize (Zea mays), barley
(Hordeum vulgare), and wheat (Triticum aestivum), is vi-
tal for human and animal nutrition and is therefore of
global economic importance (Olsen, 2007). In many
seeds, such as some representatives of the Brassicaceae,
the endosperm is entirely absent at seed maturity, the
storage reserves having been absorbed by the cotyle-
dons during embryo development. Arabidopsis (Arab-
idopsis thaliana) and Lepidium (Lepidium sativum) are
notable exceptions in that they have retained a thin
layer of endosperm tissue in the mature seed (Müller
et al., 2006; Linkies and Leubner-Metzger, 2012).

Some seeds exhibit primary dormancy at maturity
that has been induced by abscisic acid (ABA; Hilhorst,
1995; Kucera et al., 2005). In its simplest sense, dormancy
can be thought of as a block to germination of an intact
viable seed under favorable conditions (Hilhorst, 1995;
Bewley, 1997). A more sophisticated definition was
proposed by Baskin and Baskin (2004), who state that
a dormant seed does not have the capacity to germi-
nate in a specified period of time under any combi-
nation of normal physical environmental factors that
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are otherwise favorable for its germination. Seed dor-
mancy can be imposed by the embryo, the seed coat
(including the endosperm), or a combination of both
depending on the plant species (Bewley, 1997).

The endosperm has been shown to be an important
regulator of germination potential in several systems,
including tomato (Solanum lycopersicum; Groot et al., 1988;
Toorop et al., 2000), tobacco (Nicotiana tabacum; Leubner-
Metzger et al., 1995; Petruzzelli et al., 2003), Arabidopsis
(Bethke et al., 2007), and Lepidium (Müller et al., 2006;
Linkies et al., 2009; Voegele et al., 2011). Arabidopsis
continues to be an important model for elucidating the
hormonal and genetic networks that regulate dormancy
and germination (Kucera et al., 2005; Holdsworth et al.,
2008), and new bioinformatic methods are providing in-
sights into the evolutionary conservation of such net-
works in angiosperms (Bassel et al., 2011). Research
using the close relative Lepidium, whose larger size
makes it amenable to biomechanical techniques, has
given insight into the hormonal control of endosperm
weakening during germination and established that
the mechanism of control is conserved between Arab-
idopsis, Lepidium, and tobacco (Müller et al., 2006;
Linkies et al., 2009; Voegele et al., 2011). It has been
reported that ABA is a key regulator of germination in
tobacco, Arabidopsis, and Lepidium, controlling the
process of endosperm rupture but not testa rupture
(Leubner-Metzger et al., 1995; Petruzzelli et al., 2003;
Müller et al., 2006). Microarray analyses of ABA-treated
Arabidopsis and Lepidium seeds revealed that many
cell wall remodeling enzyme (CWRE) genes are down-
regulated upon exogenous application of ABA (Penfield
et al., 2006; Linkies et al., 2009). Therefore, it follows that
ABA impacts cell wall remodeling, which influences
germination kinetics. The endosperm is therefore an im-
portant control tissue for seed germination and repre-
sents a useful model to investigate cell wall architectures
and their remodeling.

Cell walls are robust, multifunctional structures that
not only protect cells from biotic and abiotic stresses,
but also regulate growth, physiology and development
(Albersheim et al., 2010). Cell walls are fibrous com-
posites in which cellulose microfibrils are coextensive
with/cross-linked by noncellulosic polysaccharides.
In dicotyledonous plants, xyloglucan (XG) is a major
polymer that can cross-link cellulose (Cosgrove, 2000).
Load-bearing fibrous networks impart tensile strength
to cell walls and are embedded in more soluble, gel-like
matrices of pectic polysaccharides, glycoproteins, pro-
teins, ions, and water. The constituent pectic polymers
are currently classified as homogalacturonan (HG),
rhamnogalacturonan I [RG-I; also comprising arabinans
and type 1 (arabino)galactans as side branches] and
rhamnogalacturonan II, and xylogalacturonan (XGA)
(Willats et al., 2001; Caffall and Mohnen, 2009). Pectins
are involved in a diverse range of processes, including
the regulation of intercellular adhesion/cell separation
at the middle lamella, regulating the ionic status, and
the porosity of cell walls that influences the access of
CWREs to substrates (Willats et al., 2001). Noncellulosic

polysaccharides exhibit numerous structural elaborations
and differ in their glycan, methyl, and acetyl substitution
(Caffall and Mohnen, 2009; Burton et al., 2010). Such
modifications have the potential to impact their func-
tionality, including their ability to interact with other
wall components and their susceptibility to degrada-
tion and modification by CWREs.

Studies using Arabidopsis (Iglesias-Fernández et al.,
2011), Lepidium (Morris et al., 2011), and tomato (Groot
et al., 1988) have highlighted a role for endo-b-mannanases
(EBMs), enzymes that degrade heteromannan polysac-
charides, during seed germination. In hard seeds with
heteromannan-rich endosperms, such as carob (Ceratonia
siliqua), date (Phoenix dactylifera), Chinese senna (Senna
obtusifolia), and fenugreek (Trigonella foenum-graecum),
however, it has been proposed that thinner walls in the
micropylar endosperm (ME) and not EBM activity are
responsible for allowing radicle protrusion during ger-
mination (Gong et al., 2005). Therefore, enzymatic cell
wall remodeling and native cell wall architectural asym-
metries both have the potential to impact on germination.

Although studies on the molecular networks control-
ling germination have indicated a role for several classes
of CWREs in endosperm remodeling and the promotion
of germination (Penfield et al., 2006; Kanai et al., 2010;
Morris et al., 2011), there is a paucity of information re-
lating to the characterization of such changes at the cell
wall level and, indeed, cell wall structures themselves.
This study focuses on the targets of CWRE genes cur-
rently thought to be involved in seed germination (i.e.
cellulose, XG, heteromannan, and pectic polysacchar-
ides). We show that all three seeds possess a similar core
cell wall architecture containing unesterified HG, arab-
inan, and XG. In tobacco, the core cell wall architecture
is restricted to the ME, whereas in Arabidopsis and
Lepidium, this architecture is observed throughout the
endosperm. A further unique feature of the tobacco en-
dosperm is abundant heteromannan. We also outline,
using Arabidopsis, to what extent cell wall components
contribute to the regulation of seed germination.

RESULTS

Seeds of the three main species used in this study are
shown in Figure 1A. Our study focused on determining
to what extent cell wall structures were conserved be-
tween close relatives (Arabidopsis and Lepidium) and
different families (Brassicaceae and Solanaceae). The
larger size of Lepidium and tobacco seeds makes them
particularly amenable to biomechanical analyses. Arab-
idopsis seeds are too small for such methods; however,
the associated molecular genetic resources allow mu-
tant analysis and insights into the roles of cell wall
structures and remodeling.

Arabidopsis and Lepidium seeds exhibit a similar
morphology. The seeds are classified as Foliate Axil
Type 2, according to the phylogeny outlined by Finch-
Savage and Leubner-Metzger (2006). The embryos of
both seeds are hooked, with the cotyledons lying adja-
cent to the radicle, whereas tobacco seeds are classified

1552 Plant Physiol. Vol. 160, 2012

Lee et al.



as Linear Axil type and possess a straight embryo (Fig.
1A). The Arabidopsis embryo is surrounded by a single
layer of endosperm cells. The endosperm adjacent to the
radicle is the ME, the endosperm region adjacent to the
cotyledons is the chalazal endosperm (CE), and the re-
gion between ME and CE is known as the peripheral
endosperm (PE; Fig. 1B). Lepidium seeds are approxi-
mately 5 times longer and wider than Arabidopsis seeds
yet also possess an endosperm that is a single cell layer
(one to two cells thick at the ME apex; Fig. 1B). Both
Arabidopsis and Lepidium seeds are myxospermous
(i.e. the dry seed extrudes pectin-rich mucilage from
mucilage secretory cells in the testa upon imbibition).
Tobacco seeds, by contrast, do not release mucilage upon

imbibition. The tobacco endosperm comprises three to
five cell layers. In Arabidopsis and Lepidium, the en-
dosperm is thickest at the ME, whereas in tobacco, with a
much thicker endosperm, the ME is not the thickest re-
gion of the endosperm.

The Arabidopsis Seed Endosperm Has a Different Cell
Wall Architecture Than the Embryo

Labeling of sections of 3-h-imbibed Arabidopsis seeds
with a carbohydrate-binding module (CBM) directed to
crystalline cellulose, designated CBM3a (Tormo et al.,
1996), revealed cellulose in all Arabidopsis seed cell walls
(Fig. 2A). CBM3a binding to endosperm walls was uni-
form but slightly weaker than to the embryo or testa
(Supplemental Fig. S1), whereas CalcofluorWhite, which
binds to cellulose and other b-linked glycans (Herth and
Schnepf, 1980), bound uniformly to embryo, endosperm,
and testa (Fig. 2B).

Matrix components of seed cell walls were explored
using a range of monoclonal antibodies directed to the
expected component cell wall polymers. LM15, a probe
directed to a xylosylated epitope of XG (Marcus et al.,
2008), bound strongly and uniformly to the embryo (Fig.
2C) but not to endosperm cell walls. A related XG probe,
LM25, directed toward a galactosylated XG epitope
(Pedersen et al., 2012), bound to embryo cell walls and
slightly weaker to endosperm cell walls (Fig. 2D). No-
tably, the antibody LM21, which binds to heteromannan
(Marcus et al., 2010), or the heteromannan-directed
carbohydrate-binding module CBM27 (Marcus et al.,
2010) did not bind to sections (Fig. 2E and Supplemental
Fig. S1, respectively).

The occurrence of HG in seed cell walls was inves-
tigated with a panel of probes with specificities for
HG with differing degrees and patterns of methyl-
esterification. Monoclonal antibody LM19 has a prefer-
ence for HG with a low degree of methyl-esterification
(Verhertbruggen et al., 2009a; Marcus et al., 2010). LM19
bound uniformly but weakly to cell walls of Arabidopsis
embryos, mainly at intercellular spaces. The LM19 epi-
tope was particularly abundant in endosperm cell walls
and was detectable at the surface of the testa (Fig. 3A).
LM20, which has a preference for high methyl-ester
HG (Verhertbruggen et al., 2009a; Marcus et al., 2010)
bound exclusively to testa columella in Arabidopsis
(Supplemental Fig. S1). The relative binding of these
and all cell wall probes used in this study are shown in
Supplemental Figure S1.

Antibodies LM5 and LM6 bind to (1→4)-b-D-galactan
and (1→5)-a-L-arabinan, respectively (Jones et al., 1997;
Willats et al., 1998). These polysaccharides are thought
to mainly occur as side chains of pectic RG-I (Willats
et al., 2001), although (1→5)-a-L-arabinan can exist as a
free polymer (Beldman et al., 1997) and has been
identified in cytosolic water-soluble heteroglycans in
Arabidopsis leaves (Fettke et al., 2005) and in arabino-
galactan proteins in Physcomitrella patens (Lee et al.,
2005). Immunolabeling of sections with LM5 revealed
that galactan was present but not particularly abundant

Figure 1. Seed structure of the three species studied. A, From left to
right, mature dry seeds of Arabidopsis, Lepidium, and tobacco. B, Bright-
field micrographs of longitudinal medial sections of 3-h-imbibed mature
seeds stained with toluidine blue O showing embryo (Em), cotyledons
(C), radicle (R), testa (T), ME, PE, CE, and mucilage (M). [See online
article for color version of this figure.]
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in either embryo or endosperm cell walls (data not
shown). The LM6 epitope was present in embryo cell
walls and was particularly abundant in the endosperm
(Fig. 3C). LM6 binds to short oligoarabinosides and can
bind to branched arabinan structures, while a related
antiarabinan probe, designated LM13, has a preference
for longer linear oligoarabinosides (Verhertbruggen
et al., 2009b). LM13 revealed spatial heterogeneity of
arabinan structure in the endosperm as the epitope
was found to be restricted to the inner and outer walls
of the endosperm but absent from transverse cell
walls (Fig. 3D).

Arabinans can be processed in cell walls by a variety
of arabinan-modifying enzymes, including a-L-arabi-
nofuranosidases (Chávez Montes et al., 2008), and
embryo cell wall arabinans have been reported to be

metabolized during germination (Gomez et al., 2009).
The antibody LM16 is proposed to bind to the resi-
due of a-L-arabinofuranosidase action (Verhertbruggen
et al., 2009b). The LM16 epitope was weakly detectable
in endosperm cell walls (Fig. 3E).

Extensins are cell wall proteins belonging to the
Hyp-rich glycoprotein superfamily (Kieliszewski and
Lamport, 1994). A range of probes were used to lo-
cate extensin in Arabidopsis. Of those used, LM1
(Smallwood et al., 1995) and JIM12 (Smallwood et al.,
1994) bound to Arabidopsis sections, both probes
exhibited the same binding profile, and the abun-
dance of the JIM12 epitope at the embryo surface is
shown in Figure 3F.

In summary, the in situ cell wall epitope detection
study suggests that Arabidopsis endosperm cell
walls comprise cellulose, unesterified HG, arabinan,
and XG polysaccharides. This architecture is distinct
from embryo cell walls, which are more cellulose and
XG rich, with lesser amounts of unesterified HG and
arabinan.

Figure 2. In situ localization of cellulose and noncellulosic polysac-
charides in medial longitudinal sections of 3-h-imbibed Arabidopsis
seeds. A and B, Whole seed sections labeled with the probes CBM3a
and Calcofluor White. CBM3a binding revealed cellulose in all cell
walls. C to E, ME and CE seed regions labeled with probes LM15 XG,
LM25 XG, and LM21 HM. LM15 XG was detectable in embryo but not
endosperm cell walls, whereas LM25 XG was detectable in testa,
endosperm, and embryo cell walls. No heteromannan (HM) was de-
tectable in the seed. C, Cotyledons; R, radicle; T, testa. Bars = 50 mm.
[See online article for color version of this figure.]

Figure 3. In situ localization of pectic polysaccharides and extensin
in medial longitudinal sections of 3-h-imbibed Arabidopsis seeds. A,
Immunolabeling with LM19 revealed the abundance of unesterified
HG in the endosperm. B, Calcofluor White labeled all cell walls.
Labeling with anti-arabinan probes revealed the spatial heteroge-
neity of arabinan in the endosperm. C, LM6 arabinan was uniformly
distributed through endosperm cell walls. D, LM13 bound to the
outer walls of the endosperm and weakly to transverse endosperm
walls. E, The LM16 epitope was weakly detectable in endosperm
walls. F, JIM12 labeling of extensin indicated restricted occurrence at
the embryo surface/inner face of the endosperm and testa surface. C,
Cotyledons; R, radicle; T, testa. Bars = 50 mm. [See online article for
color version of this figure.]
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Lepidium and Arabidopsis Endosperm Cell Wall
Architectures Are Similar But with Structural Distinctions

Lepidium and Arabidopsis are closely related spe-
cies that, with the exception of their size, exhibit sim-
ilar seed structures (Linkies and Leubner-Metzger,
2012). To determine whether this similarity extends to
cell wall architecture, analyses of 3-h-imbibed resin-
embedded Lepidium seeds were performed. As with
Arabidopsis, Calcofluor White bound strongly to all cell
walls of the embryo, endosperm, and testa (Fig. 4A).
The binding profile was the same for CBM3a (data not
shown).
Immunolocalization of XG in Lepidium sections re-

vealed the LM15 XG epitope to be abundant in embryo
cell walls, at the surface of the seed testa, and, in contrast
with Arabidopsis, abundant in endosperm cell walls (Fig.
4B). Interestingly, LM15 labeling of endosperm cell walls
revealed, to our knowledge, a hitherto unseen spatial
distribution of XG polysaccharides; rather than being
uniformly distributed though the cell wall, the LM15
epitope was most abundant at inner cell wall regions (Fig.
4E). The galactosylated XG probe LM25 bound more

extensively than LM15 but still preferentially to inner cell
wall regions (Fig. 4G). The binding profile of CCRCM1,
directed to fucosylated XG (Puhlmann et al., 1994), was
similar to that of LM15 (Fig. 4F). As with Arabidopsis,
Lepidium endosperm lacked detectable heteromannan;
however, heteromannan was abundant at both the testa
surface and in seed mucilage (Supplemental Fig. S2).

Probing of sections with the antibody LM19 revealed
that the endosperm and testa cell walls and mucilage of
Lepidium seeds contain abundant low methyl-ester HG
and the embryo radicle to a lesser extent (Fig. 4C). LM20
did not bind to either the embryo or endosperm but
bound strongly to the testa and mucilage, indicating
both high and low methyl-ester HG is abundant in
Lepidium mucilage (data not shown). LM8 binds to
XGA, a HG substituted at C3 with single b-D-Xyl resi-
dues (Willats et al., 2004) most often associated with
cells undergoing cell detachment. LM8 did not bind to
Arabidopsis sections; however, binding was abundant
in Lepidium where it was restricted to the inner face of
the endosperm and the surface of the testa (Fig. 4D).

Labeling of sections with probes directed to arabinans
revealed spatial heterogeneity within the endosperm that

Figure 4. In situ localization of cell wall epitopes in medial longitudinal sections of 3-h-imbibed Lepidium seeds. A, Calcofluor
White labeling of Lepidium showing cotyledons (C), radicle (R), testa (T), ME, CE, and PE. B, The LM15 XG epitope was
uniformly distributed in embryo cell walls. C, LM19 bound strongly and uniformly to endosperm, testa, and mucilage. D, The
LM8 epitope was restricted to the inner face of the endosperm and surface of the testa. E and F, The LM15 XG and CCRCM1 XG
epitopes were restricted to the inner wall in the endosperm. G, A related XG probe LM25 bound more extensively than LM15
and CCRCM1. CCRCM1 and LM25 both bound strongly to embryo cell walls. H and I, Localization of cell wall arabinans using
LM6 and LM13 revealed spatial heterogeneity; the LM6 epitope was most abundant at the inner face of the endosperm, while
LM13 bound more uniformly to endosperm walls. J, LM16 strongly labeled the testa surface and weakly labeled endosperm cell
walls. I, Extensin recognized by JIM20 was abundant in the endosperm and at the inner face of the ME. Bars = 50 mm. [See
online article for color version of this figure.]
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was to some extent distinct from the profiles observed in
Arabidopsis. In the Lepidium endosperm, the LM6 epi-
tope has an asymmetric distribution being more abun-
dant at the inner face of the endosperm adjacent to the
embryo (Fig. 5H). The linear arabinan epitope recog-
nized by LM13 was uniformly distributed through en-
dosperm cell walls and at an inner region of the cell wall
at the ME (Fig. 5I). The LM16 antibody bound strongly
to the surface of the testa and weakly to cell walls of the
ME (Fig. 5J).

Immunolocalization with antibodies LM1 and JIM20
(Smallwood et al., 1994) revealed that extensins are a
readily detected component of Lepidium endosperm

cell walls (Supplemental Fig. S1 and Fig. 4K, respec-
tively). Extensins were detected in all endosperm cell
walls but were more abundant at the inner face of the
endosperm and thus colocalized with the LM6 arab-
inan and LM8 XGA epitopes (Fig. 4K).

In summary, Lepidium endosperm cell walls contain
cellulose, XG, unesterified HG, and arabinan, indicating
conserved architectures between these two members of
the Brassicaceae. Lepidium embryo cell wall composi-
tion is broadly the same as Arabidopsis, being relatively
more cellulose and XG rich than the endosperm cell
walls. In contrast with Arabidopsis, the endosperm cell
walls of Lepidium are also extensin rich. Despite the ME

Figure 5. In situ localization of cell wall epitopes
in medial longitudinal sections of 3-h-imbibed to-
bacco seeds. A, Calcofluor White labeling showing
cotyledons (C), radicle (R), testa (T), ME, CE, and
PE. B, CBM3a cellulose labeled the embryo alone.
C and D, LM15 XG and LM25 XG epitopes were
uniformly distributed in embryo cell walls and re-
stricted to the ME in the endosperm. E to G, LM15
XG binds to intercellular spaces and middle lam-
ellar regions in the ME. H, LM21 HM binds to
abundant heteromannans in the endosperm. I,
LM5 galactan is restricted to the PE and CE. J, LM6
arabinan epitopes are abundant in embryo and
endosperm cell walls. K, Extensin recognized by
JIM20 was restricted to the ME. Bars = 50 mm. [See
online article for color version of this figure.]
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region being the thickest part of the endosperm, this
difference did not coincide with any detectable cell wall
architectural asymmetry in either Arabidopsis or Lepi-
dium endosperms.

Tobacco Endosperm Is Heteromannan Rich and Exhibits
Tissue-Level Cell Wall Architectural Asymmetry

Arabidopsis and Lepidium are both endospermic
Brassicaceae exhibiting broadly similar endosperm
cell wall molecular architectures. As the hormonal
regulation of endosperm rupture is conserved be-
tween Arabidopsis, Lepidium, and tobacco, we in-
vestigated to what extent cell wall architecture was
conserved. Analysis of sections of tobacco seeds
(imbibed for 3 h) with Calcofluor White revealed that
the embryo has a distinct cell wall architecture and
that the ME has a cell wall architecture that is dif-
ferent to that of the PE and CE (Fig. 5A), indicating a
tissue level asymmetry in cell wall structures. CBM3a
labeled the embryo uniformly but did not bind to the
endosperm (Fig. 5B).
XG was abundant in embryo cell walls, as evidenced

by labeling of sections with antibodies LM15 and LM25
(Fig. 5, C and D, respectively) but was only present in
the cell walls of the ME. Analysis of antibody binding to
the ME at higher magnification revealed that the LM15
XG epitope was restricted to middle lamellae and in-
tercellular regions (Fig. 5, F and G). The most striking
feature of tobacco endosperm cell wall architecture that
was distinct from Arabidopsis and Lepidium was the
abundance of heteromannan (Fig. 5H). Both LM21 and
CBM27 bound strongly and uniformly to endosperm
but not to embryo cell walls (Fig. 5H and Supplemental
Fig. S1, respectively).
RG-I-associated (1→4)-b-D-galactan recognized by

LM5 was restricted to an inner region of the cell walls
of the PE and CE and absent from the embryo and ME
(Fig. 5I); arabinan recognized by LM6 was detected in
a complementary manner and while detected in all cell
walls was most abundant in ME cell walls (Fig. 5J).
Extensin recognized by JIM20 was restricted to the ME
alone (Fig. 5K). As observed with Arabidopsis and
Lepidium, tobacco embryo cell walls were relatively
more cellulose and XG rich than endosperm walls and
contained reduced levels of HG and arabinan as indi-
cated by antibody binding.
To investigate further the differential detection be-

tween species of heteromannan in endosperm cell walls
and patterns of polysaccharide occurrence as revealed
by in situ immunofluorescence analyses, neutral mono-
saccharide linkage analysis was performed on cell wall
extracts from Lepidium and tobacco endosperms with
Lepidium embryo cell walls for comparison. The results
(Table I) indicate that Lepidium endosperm and embryo
cell walls contain low levels of heteromannan (2.8% and
3.5% of neutral polysaccharides, respectively), whereas
tobacco endosperm contains abundant heteromannan
(64.6%), corroborating our in situ observations with

probes LM21 and CBM27. Linkage composition for
other neutral monosaccharides supported the in situ
analyses and indicated, in Lepidium endosperm, the
presence of cellulose, XG, and arabinan, with the latter
being particularly abundant. The monosaccharide
linkage analysis also confirmed the presence of ara-
binan in the tobacco seed endosperm. The presence in
Lepidium endosperm samples of 4-linked xylosyl resi-
dues indicative of substituted xylans, albeit at a rela-
tively low level (5.8%), was unexpected. In situ analysis
with a range of probes directed to unsubstituted and
substituted xylans did not reveal any insight into its
location.

We previously reported the masking of polysac-
charides by HG in a number of parenchyma systems
(Marcus et al., 2008, 2010). To investigate whether the
abundant heteromannans were capable of masking
other cell wall polymers in the endosperm of tobacco
seeds, sections were treated with EBM prior to immu-
nolabeling. CBM3a binding was revealed in the PE and
CE following EBM treatment but not in the ME (Fig. 6,
A and B). EBM treatment of sections had some effect
on XG detection, and this was particularly the case for
the LM25 XG epitope, which increased at the ME (Fig.
6, C and D). Less impact was observed on the LM15 XG
epitope, which is more restricted to the intercellular
matrices at the ME (Fig. 6, E and F).

In untreated sections of tobacco seeds, the LM19
HG epitope was detected weakly in the ME and the
outer region of the PE and was abundant at the testa
surface (Fig. 6G). The LM19 HG epitope was masked
by heteromannan, as following EBM treatment, LM19
bound to PE and CE and more strongly to the ME
(Fig. 6H). Taken together, this indicates that hetero-
mannans are able to block probe access to LM25 XG,
LM19 HG, and cellulose in the endosperm but not
intercellular matrix-located LM15 XG. These findings
have implications for the timing of CWRE action
during endosperm cell wall remodeling as these data
indicate that the porosity of the cell wall can be af-
fected by heteromannans.

No Heteromannan Detected in Arabidopsis and Lepidium
Endosperms after Cell Wall Deconstructions

Heteromannans were detectable in the mucilage
of whole-mount preparations of Arabidopsis seeds
(Supplemental Fig. S2) where they have low abun-
dance (Walker et al., 2011) but were not detected in
resin-embedded, sectioned material. Heteromannan
was retained at the testa surface and to a lesser degree
in the mucilage of Lepidium seeds following sectioning
(Supplemental Fig. S2). To confirm the absence of het-
eromannan from cell walls of Arabidopsis and Lepidium
endosperms, a series of enzymatic deconstructions were
performed aimed at the removal of the most abundant
components of the endosperm cell wall, namely, HG,
arabinan, and XG. Sections were treated with pectate
lyase, a-L-arabinofuranosidase, and xyloglucanase alone
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and in combination (Supplemental Fig. S2). No het-
eromannan epitopes were detected in Arabidopsis
sections after the enzyme deconstructions nor in the
Lepidium endosperm; however, the LM21 epitope
was weakly detectable in Lepidium embryo cell
walls following enzyme deconstruction (Supplemental
Fig. S2).

Heteromannans Are Degraded in the ME during
Tobacco Germination

Expression of EBM during seed germination has
been well studied for the Solanaceous species tomato,
Datura ferox, and Datura stramonium (Sánchez et al.,
1990; Nomaguchi et al., 1995). In Datura spp. seeds, cell
wall material was degraded at the inner face of the
ME during germination without a concurrent decrease
in heteromannan in cell wall extracts (Sánchez et al.,
1990).

To determine whether EBM remodeling of tobacco
endosperm cell walls occurs during germination,
we analyzed cell wall architectures in nongerminated,
testa-ruptured, and germinated endosperm-ruptured
seeds. In situ analyses of seed sections revealed that
heteromannan recognized by LM21/CBM27 was spe-
cifically degraded in the ME at testa rupture but not
at earlier time points (Fig. 6, K–M). Furthermore, in
testa-ruptured seeds, LM19 bound to the ME, which
indicates germination-associated unmasking of HG by
EBM-mediated degradation of heteromannan (Fig. 6I).
These data indicate a significant difference between
tobacco and the Brassicaceae representatives used in
this study as, in addition to their lack of endosperm cell
wall heteromannan, in situ analyses of Arabidopsis and
Lepidium seeds at the time points of testa rupture and
endosperm rupture revealed no endosperm cell wall
dynamics.

Differential Mechanics of Endosperm Weakening during
Germination in Lepidium and Tobacco

Distinct cell wall molecular architectures are likely
to result in varying cell wall properties, such as po-
rosity, and may also reflect mechanical properties. The
data presented here indicate that the presence of het-
eromannan in tobacco endosperm cell walls probably
impacts cell wall porosity. During germination, the
radicle pushes against endosperm tissues, which are
breached at the point of germination. To explore the
functional significance of the differing molecular archi-
tectures of Lepidium and tobacco, direct measurements
of tissue weakening were made on isolated endosperms
using the puncture force method (Müller et al., 2006).
Endosperm halves from tobacco and Lepidium were
used to calculate puncture force values at defined time
points during germination. Values for ME and CE
(or PE in the case of Lepidium) were determined (Fig.
7). During tobacco germination, a decline in puncture
force was observed that was more pronounced in ME
than CE samples (Fig. 7A). A similar decline in punc-
ture force was observed in Lepidium ME samples (Fig.
7B), indicating that ME-focused endosperm weakening
occurs in both species during germination. In Lepidium,
the force required to rupture the PE does not change
significantly after testa rupture (from 7 to 14 h); by con-
trast, tobacco CE shows a significant decrease after testa
rupture (from 36 to 60 h). The decrease in puncture
force of tobacco ME is associated with a decrease in

Table I. Monosaccharide linkage analysis of neutral sugars in cell
walls of Lepidium endosperm and embryo tissues and tobacco endo-
sperm

Figures are molar percentages and are means of three assessments.
f, Furanose; p, pyranose.

Monosaccharide
Lepidium Tobacco

Endosperm Embryo Endosperm

Ara
t-Ara (f) 15.4 14.9 2.5
1,2-Ara (f) 3.1 0.3 0.2
1,3-Ara (f) 0.8 0.3 0.0
1,5-Ara (f) 18.8 10.6 3.8
1,3,5-Ara (f) 7.2 16.0 4.1
1,2,5-Ara (f) 2.9 0.6 0.0
Total 48.3 42.8 10.6

Fuc
t-Fuc (f) 0.7 1.4 0.0
Total 0.7 1.4 0.0

Xyl
t-Xyl (p) 4.0 5.9 0.0
1,3-Xyl (p) 0.0 0.2 0.0
1,2-Xyl (p) 1.1 1.5 0.0
1,4-Xyl (p) 1.7 1.1 0.0
1,2,4-Xyl (p) 1.6 0.2 0.0
1,2,3,4-Xyl (p) 2.5 0.5 0.0
Total 10.9 9.5 0.0

Rha
1,2-Rha (p) 0.4 0.4 0.2
1,2,4-Rha (p) 0.8 1.2 0.0
Total 1.2 1.6 0.2

Man
t-Man (p) 0.1 0.5 0.3
1,4-Man (p) 0.7 1.4 60.2
1,2,4-Man (p) 0.0 0.0 0.4
1,4,6-Man (p) 1.2 1.0 3.7
1,3,6-Man (p) 0.7 0.4 0.0
1,2,3,6-Man (p) 0.0 0.2 0.0
Total 2.8 3.5 64.6

Glc
t-Glc (p) 0.3 0.2 0.5
1,3-Glc (p) 0.1 0.2 0.0
1,4-Glc (p) 20.6 23.9 19.2
1,3,4-Glc (p) 0.2 0.2 0.0
1,2,4-Glc (p) 0.4 0.4 0.0
1,4,6-Glc (p) 2.9 8.4 0.7
1,3,4,6-Glc (p) 0.2 0.2 0.0
Total 24.7 33.5 20.4

Gal
t-Gal (p) 3.4 2.3 3.3
1,3-Gal (p) 2.5 0.7 0.0
1,2-Gal (p) 2.0 2.7 0.0
1,6-Gal (p) 0.4 0.3 0.0
1,3,6-Gal (p) 3.2 1.7 0.8
Total 11.5 7.7 4.1
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detectable heteromannan in seed sections (Fig. 6M),
suggesting that heteromannans and their degradation
contribute to this aspect of cell wall mechanical prop-
erties in tobacco.

Arabidopsis Cell Wall Mutants Display Altered
Germination Characteristics

Next, we aimed to investigate to what extent cell
walls and their composition contribute to the regula-
tion of seed germination using mutants with defects in
XG, arabinan, and HG. The genotypes used included
XG-deficient xxt1 xxt2, which lacks detectable XG
(Cavalier et al., 2008), the arabinan-deficient mutant
arad1 arad2 (Harholt et al., 2012), and the putative
pectin methyltransferase mutant qua2, which has been
shown to have 50% reduction in HG without effects on
other wall polysaccharides (Mouille et al., 2007). Seeds
of the xxt1 xxt2, arad1 arad2, and qua2 mutants were
immunolabeled with appropriate probes to confirm
defects in seed cell walls (Fig. 8A).
We analyzed whether germination speed was af-

fected by the altered cell wall structures. Fully after-
ripened, nondormant seeds of all lines showed a final
germination percentage close to 100%; thus, all batches
showed a high viability. The analysis indicated that xxt1

xxt2 germinated significantly more slowly than the wild
type, whereas qua2 and arad1 arad2 germination kinetics
did not differ from the wild type (Fig. 8B). As seed
germination rates can differ between seed batches,
due to a range of factors, the delayed germination
phenotype of xxt1 xxt2 was confirmed in a third inde-
pendently grown batch of seeds. These data suggest
that XG polymers and/or their respective CWREs play
a role in regulating germination kinetics in Arabi-
dopsis seeds.

DISCUSSION

Tobacco seed endosperm cell walls contain abun-
dant heteromannan, whereas Arabidopsis and Lepi-
dium endosperms do not. Moreover, in tobacco, this
heteromannan overlays a tissue-level asymmetry in cell
wall architecture as evidenced by the staining of the ME
region by Calcofluor White (Fig. 5). Such asymmetries
in probe labeling of endosperm cell walls were not
observed for any polymer class in either Arabidopsis or
Lepidium. We also immunodetected abundant hetero-
mannan in tomato seed endosperm (Supplemental Fig.
S2), supporting previous work (Groot et al., 1988; Dahal
et al., 1997). Endosperm cell wall architectural asym-
metry has also previously been demonstrated for tomato

Figure 6. Medial longitudinal sections of tobacco
seeds with enzymatic deconstruction and during
germination. Three-hour-imbibed mature tobacco
seed sections were treated with EBM or a buffer
control prior to immunolabeling. A and B,
CBM3a cellulose was unmasked in PE and CE cell
walls following EBM treatment. C and D, LM25
XG epitopes were unmasked in ME following
EBM treatment. E and F, LM15 XG epitopes were
not substantially unmasked in ME following EBM
treatment. G and F, LM19 HG was weakly de-
tectable in the endosperm of 3-h-imbibed seeds
and was unmasked in all endosperm cell walls by
EBM treatment. I, The LM19 epitope was
unmasked in the ME at testa rupture (TR) at 36 h.
K to M, Immunolabeling of germinating tobacco
seeds with LM21 HM revealed the specific deg-
radation of heteromannan (HM) at the ME at testa
rupture. R, Radicle; C, cotyledons; T, testa. Bars =
50 mm. [See online article for color version of this
figure.]
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(Nonogaki et al., 2007). The process of tomato seed
endosperm weakening during germination has been
assessed by puncture force analyses, and these have
indicated the involvement of EBM and other CWREs
(Toorop et al., 2000; Wu et al., 2001). This work indi-
cates that cell wall architecture in tobacco seed endo-
sperm is similar to that observed in tomato; moreover,
these sets of observations point to a clear distinction in
cell wall molecular architectures of seed endosperms
between the Brassicaceae and the Solanaceae families.
Such knowledge has consequences for understanding
CWRE action and its role in seed germination.

Tobacco and tomato belong to two different sub-
groups within the Solanaceae based on morphological
and molecular criteria, the Cestroideae and Solanoideae,
respectively. Tobacco seed germination has two steps
(i.e. testa rupture followed by endosperm rupture). In
tomato seeds, by contrast, the testa and MPE are ad-
hered to each other and rupture together (Petruzzelli
et al., 2003). Endosperm weakening in tomato is biphasic
(Toorop et al., 2000). ABA-insensitive expression of EBM
and other proteins occurs in the early phase and has
been shown to be necessary but not sufficient for the
completion of germination. The late phase is critical,
as it controls the final step of radicle emergence
(Wu et al., 2001). The spatiotemporal expression pat-
terns of CWRE genes in the MPE have been elucidated
from in situ hybridization analyses of germinating
tomato seeds. Within 12 h of imbibition, xyloglucan
endotransglycosylase/hydrolase (XTH; LeXET4) and
expansin (LeEXPA4) expression was detected. After
12 h of imbibition, cellulase (LeCel55) expression,
EBM (LeMAN2), polygalacturonase (LeXPG1), and
b-1,3-glucanase (LeGluB) genes were expressed (for
review, see Nonogaki et al., 2007). These data sug-
gest that CWRE action on the cellulose-XG network
to allow limited expansion of the wall precedes bulk
cell wall disassembly during tomato seed germina-
tion; therefore, a similar pattern of CWRE gene ex-
pression might occur during tobacco germination.

The evolution of the seed endosperm in species such
as Arabidopsis and Lepidium is thought to have been
a reduction from a multicellular layer to a single or
two-celled layer with reduced capacity for storage of
reserves (Linkies and Leubner-Metzger, 2012). It is
possible that this has been associated with loss of
abundant heteromannan polysaccharides and an as-
sociated increase in the level of cellulose and cell wall
architecture more typical of vegetative organ cell walls,
albeit arabinan rich.

Heteromannans May Have Distinct Roles in Brassicaceae
and Solanaceae Seeds

A major distinctive feature of the tobacco seed en-
dosperm, relative to Arabidopsis and Lepidium, is its
inherent spatial heterogeneity, or asymmetry, in terms
of cell wall architecture. This spatial heterogeneity does
not involve detectable heteromannan but asymmetries
in cell structure/Calcofluor White binding and specific
RG-I structures (arabinan), XG, and extensin occurrence
at the ME that broadly reflects the cell wall architecture
of the entire Arabidopsis and Lepidium endosperms. In
tobacco endosperm, heteromannan is abundantly and
evenly detectable prior to germination, and here we
have shown that heteromannan degradation in tobacco
is clearly spatially dynamic and focused on the ME. We
propose that this heteromannan degradation results in
exposure of the HG, XG, and arabinan components of
the cell wall that can also then be acted upon by other
CWREs. It is of considerable interest in this regard that
our experimental enzymatic intervention can unmask

Figure 7. Puncture force analyses of tobacco and Lepidium endo-
sperms during germination. A, Puncture force measurements of ME
and CE from tobacco. B, Puncture force measurements of ME and PE
from Lepidium. Tobacco seeds exhibit testa rupture (TR) at 36 h, and
endosperm rupture (ER) begins at 60 h. Lepidium seeds exhibit testa
rupture at 7 h, and endosperm rupture begins at 14 h. Pre-endosperm
rupture tobacco and Lepidium seeds were selected for the 60- and
14-h measurements, respectively.
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arabinan, cellulose, and LM25 XG but not LM15 XG.
The LM15 form of XG is located in intercellular/middle
lamellae regions and does not appear to be subject to
masking, presumably because of its restricted occur-
rence in the intercellular matrix. The distinct cell wall
locations of XG epitopes (inner cell wall in Lepidium
and cell wall/intercellular matrix in tobacco) indicates
the considerable potential for structural heterogeneity
of location of cell wall components between species,
even for the same polymer class in the same tissue. Such
observations point to distinct functions for XG ranging
from mechanics to cell adhesion, which has previously
been proposed for XG in Solanaceous systems (Marcus
et al., 2008; Ordaz-Ortiz et al., 2009).
The role of heteromannan as structural and storage

carbohydrates is well established (Meier and Reid, 1982),
and the data we present here suggest that they can
function as a structural polysaccharide in tobacco en-
dosperms. Heteromannans are also proposed to act as
regulators of growth and development (Auxtová et al.,
1995; Bilisics et al., 2004; Benová-Kákosová et al., 2006).
The heteromannan backbone is synthesized by cellulose
synthase-like A (CSLA) glycan synthases (Liepman et al.,
2005, 2007; Suzuki et al., 2006). CSLA7 has been shown
to synthesize mannan in vitro (Liepman et al., 2005) and
to synthesize stem glucomannan in vivo (Goubet et al.,
2009). Disrupting the CSLA7 gene resulted in defective
pollen tube growth and embryo lethality (Goubet et al.,
2003). Following enzymatic deconstruction of seed sec-
tions, we were able to detect heteromannan in Lepidium
embryo cell walls, albeit at very low quantities, but were
not able to detect heteromannan in Arabidopsis em-
bryos. However, regulated expression of EBMs is evi-
dent in Lepidium seeds (Morris et al., 2011), and analysis
of Arabidopsis EBM mutants demonstrated that such
mutations have a negative impact on seed germination
(Iglesias-Fernández et al., 2011). We show here that het-
eromannans are present in Arabidopsis and Lepidium

mucilage but are only detectable at low levels in Lepi-
dium embryo cell walls following enzymatic decon-
struction. Heteromannans may either be absent from
Arabidopsis/Lepidium endosperms or present at a
level below the detection limit. If heteromannans are
absent from endosperms, it is possible that EBMs pro-
duced by the embryo and/or endosperm are required
to act on heteromannans in the mucilage to generate
signaling oligosaccharides, which have growth-promoting
effects on the seedling.

Conserved, Multifunctional Roles for Pectic Arabinans

An important insight from both the in situ and
monosaccharide linkage analyses is that the three spe-
cies studied all possess an arabinan-rich endosperm.
Tomato endosperm cell wall neutral sugars comprise
up to 10% Ara (Dahal et al., 1997) which is equivalent
to that observed in tobacco endosperm cell walls (Table
I). Endosperm cell walls are distinct from embryo cell
walls, the latter being more cellulose and XG rich. Pectic
arabinans can occur as side chains of RG-I but may
also exist as free arabinans (Beldman et al., 1997). The
monosaccharide composition of the side chains of RG-I
show extreme variability, and RG-I (particularly arab-
inan substructure) is extensively developmentally regu-
lated (Willats et al., 2001; Caffall and Mohnen, 2009;
Verhertbruggen et al., 2009b; Yapo, 2011).

The functional significance of abundant arabinan
within cell walls is not clear, but an association with
maintaining cell wall flexibility/elasticity has been
documented. Studies of the resurrection plant Myr-
othamnus flabellifolia revealed that its leaf cell walls
have unusually high arabinan content that is proposed
to stop HG forming irreversible associations during
drying and thereby maintaining wall flexibility (Moore
et al., 2008). Furthermore, arabinans have been dem-
onstrated to maintain cell wall elasticity in stomatal

Figure 8. Alterations in seed cell wall structure
affect seed dormancy and germination charac-
teristics in Arabidopsis. A, Immunofluorescence
micrographs of cell wall mutants showing alter-
ations in cell wall architecture. xxt1 xxt2 seed cell
walls contain no detectable LM25 XG epitope.
arad1 arad2 endosperm cell walls contain re-
duced levels of LM13 arabinan epitope. qua2
seeds contain less LM19 HG epitope. R, Radicle.
Bars = 50 mm. B, Seed germination kinetics were
assessed for after-ripened wild-type and mutant
seeds. qua2 and arad1 arad2 germination speeds
were similar to wild-type seeds. xxt1 xxt2 ger-
minates significantly more slowly than the wild
type. Means of germination speeds shown in
tabular form. [See online article for color version
of this figure.]
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guard cells where they are proposed to modulate HG
interactions (Jones et al., 2003). Arabinans have been
shown to be metabolized during embryo development
and germination (Gomez et al., 2009). AtBX3 is a bi-
functional xylosidase/arabinosidase hydrolase expressed
specifically in the endosperm at the globular stage of
embryo development. bx3 mutant seeds exhibited re-
duced size, but not weight, and delayed germination
(Minic et al., 2006). The delayed germination phenotype
of bx3 seeds may be a result of incorrect arabinan pro-
cessing during endosperm development. Therefore, seed
arabinans may be multifunctional and can act as storage
carbohydrates, polymers that maintain wall integrity
during seed rehydration and also contribute to endo-
sperm mechanical properties (tissue elasticity) that im-
pact seed germination.

A Core Cell Wall Architecture, Common to Endosperms, Is
a Target for CWREs to Effect Endosperm Rupture

In Arabidopsis, Lepidium, and tobacco, the seed en-
dosperm has to be able to stretch to allow initial embryo
expansion during water uptake before endosperm rup-
ture takes place. In one sense, germination progress can
be thought of as a function of endosperm cell wall
elasticity prior to rupture and embryo expansion driven
by turgor pressure. The puncture force data highlight a
key difference between the multicellular endosperm of
tobacco and the thin endosperm of Lepidium. The en-
dosperms of both species exhibit an ME-focused de-
crease in puncture force during germination; however,
in Lepidium, the PE shows no weakening, while in to-
bacco, the puncture force for the CE decreases. We
propose that the final decrease in force required to
rupture the endosperm, in both Lepidium and tobacco,
is the result of CWRE action on a core ME cell wall
architecture that is XG, HG, and arabinan rich. We
propose that all three species have this similar core ar-
chitecture in their ME cell walls and that this will have a
similar inherent elasticity. In the case of tobacco, this
core architecture is restricted to the ME and encased in
abundant heteromannan. It is the occurrence of the
abundant heteromannan that gives the tobacco endo-
sperm increased strength: Degradation of heteromannan
by EBM at the ME during germination is correlated with
a decrease in the puncture force of the endosperm.
Heteromannan could possibly act as a control polysac-
charide in tobacco that is degraded to allow CWREs
unconstrained access to the polymers of the core cell wall
architecture. Our proposal is that the endosperm core cell
wall architecture is acted on by XG, pectic, and related
enzymes and in the case of Arabidopsis and Lepidium,
unlike tobacco, no evidence for a clear hierarchy or se-
quence of polymer degradation has yet been obtained.

Candidate cell wall remodeling factors active on this
core cell wall architecture would include expansins and
XTHs acting on the XG/cellulose network within the
wall. Expansin expression is correlated with endosperm
weakening in tomato (Chen and Bradford, 2000) and

Lepidium (Voegele et al., 2011). Both expansin and XTH
expression increases markedly in the endosperm during
Arabidopsis and Lepidium seed germination and are
down-regulated upon exogenous application of ABA or
paclobutrazol (an inhibitor of GA synthesis; Penfield
et al., 2006; Voegele et al., 2011). Pectic CWREs acting on
endosperm cell walls will include polygalacturonase,
pectin methylesterase, pectate lyases, and arabinofur-
anosidases (Sitrit et al., 1999; Ren and Kermode, 2000;
González-Carranza et al., 2007).

This study indicates that extensins are abundant in the
Lepidium endosperm, restricted to the ME in tobacco
endosperm, and appear to be restricted to the embryo
and seed surface in Arabidopsis, although it is possible
that in Arabidopsis endosperms, they possess distinct
structural features not recognized by available probes.
Extensins are proposed to function in cell wall assembly
(Cannon et al., 2008). Extensin gene expression has been
correlated with tissues that have to withstand tensile and
osmotic stress, such as root hairs (Bucher et al., 1997),
hypocotyls (Shirsat et al., 1996), and seed coats (Cassab
et al., 1985). The endosperm has to withstand both ten-
sile and osmotic stress during seed dehydration and
imbibition, and the extensin network likely contrib-
utes to cell wall mechanical properties.

Reactive oxygen species (ROS; e.g. superoxide, hy-
drogen peroxide, and hydroxyl radicals) have recently
emerged as important factors in seed dormancy (Bailly
et al., 2008) and have previously been shown to be
synthesized by seed coats of Raphanus sativus in response
to germination stimuli (Schopfer et al., 2001). ROS are
implicated in cell wall loosening through the cleavage of
cell wall polysaccharides (Fry, 1998) and wall stiffening
by the cross-linking of cell wall components, including
extensins (Hohl et al., 1995; Ros-Barcelo et al., 2002). ROS
play a role in cell expansion processes (e.g. root elon-
gation; Liszkay et al., 2004; Renew et al., 2005). In
Lepidium, radicle and endosperm cell walls ROS are
produced during germination, and this process has been
shown to be promoted by GA and inhibited by ABA
(Müller et al., 2009). Moreover, ROS production was
associated with endosperm weakening, suggesting scis-
sion of cell wall polysaccharides by ROS is an important
aspect of cell wall remodeling during germination
(Müller et al., 2009). How ROS are integrated with spe-
cific components of what we propose as the core endo-
sperm cell wall architecture has yet to be elucidated.

Arabidopsis Cell Wall Mutants and Germination Control?

XTHs are implicated in XG remodeling, and XG
oligosaccharides have been shown to have cell ex-
pansion promoting effects (McDougall and Fry, 1990).
Stress/strain assays analyzing the properties of xxt1
xxt2 walls revealed them to be more extensible than
wild-type walls, thereby supporting a reinforcing role
for XG; however, xxt1 xxt2 walls were less extensible
in creep assays mediated by a-expansin (Park and
Cosgrove, 2012). Such observations, including the fact
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that xxt1 xxt2 plants are nearly wild-type in appearance
yet contain no detectable XG, presents a confusing pic-
ture regarding the exact role of XG in cell walls. Our
analyses of xxt1 xxt2 seed germination kinetics suggests
that XG, and the associated CWREs, are functional
components of the seed germination network. Interest-
ingly, germination kinetic analysis of xth31 xtr8 mutants,
an endosperm-specific XTH, revealed that these seeds
germinate faster than the wild type, suggesting a cell
wall strengthening role for these gene products (Endo
et al., 2012). Further studies on associated gene expres-
sion changes and responses of these seeds to stress
during germination may give us a clearer understanding
of why such changes in cell wall architecture and in what
specific tissues, embryo or endosperm, impact the con-
trol of seed germination in this manner.

CONCLUSION

Prior to this study, in situ analyses of seed cell wall
architectures had been limited and had not been per-
formed to the level of resolution presented here. The
panel of monoclonal antibody and CBM probes cur-
rently available for cell wall biology is considerable, and
their use in conjunction with chemical and enzymatic
cell wall disassembly is revealing hitherto unexpected
complexities in cell wall compositions, heterogeneities,
and diversity. We suggest that for the endosperm tissue
of the species examined, there is a core architecture
consisting of XG, unesterified HG, and arabinan that are
all or in part remodeled during seed germination. In
tobacco endosperm, this core architecture is restricted to
the ME and all endosperm cell walls contain abundant
heteromannan that is effectively degraded at the ME
during seed germination. The core cell wall architecture
is the abundant type in Arabidopsis and Lepidium
endosperms, and there is no detectable inherent struc-
tural cell wall asymmetry or heterogeneity in the seed
endosperm prior to germination. This also has the
consequence of no major ME-focused cell wall archi-
tectural dynamics during germination as seen in to-
bacco, but CWRE action on abundant HG, arabinan,
XG, and the action of expansins at the ME that leave no
readily detectable cell wall architectural traces. It could
be argued that the spatial cell wall dynamics in Arabi-
dopsis and Lepidium do not involve any bulk change in
cell wall polymers but in CWRE gene expression. By
contrast, the tobacco seed endosperm has inherent
spatial cell wall heterogeneity and presents a clear bulk
polymer dynamic in the selective removal of hetero-
mannan during radicle emergence.

MATERIALS AND METHODS

Plant Material

Arabidopsis (Arabidopsis thaliana) seeds ecotype Columbia were germi-
nated in 10-cm2 tissue culture petri dishes (Sterilin) on 0.7% (w/v) agarose
(Sigma-Aldrich) under continuous light at 22°C. Cell wall mutants were ger-
minated under the same growth conditions. Seeds of xxt1 xxt2 (Cavalier et al.,

2008) were obtained from the European Arabidopsis Stock Centre (Notting-
ham, UK), arad1 arad2 (Harholt et al., 2012) seeds were a generous gift from
Jesper Harholt, and qua2 (Mouille et al., 2007) seeds were a generous gift from
Grégory Mouille. Lepidium (Lepidium sativum) ‘Gartenkresse, einfache’
(Juliwa) seeds were germinated in 10-cm2 petri dishes containing 6 mL of
distilled water and two layers of 3MM filter paper (Scientific Laboratory
Supplies) under continuous light at 24°C. Tobacco (Nicotiana tabacum ‘Havana
425’) seeds were germinated in 10-cm2 petri dishes containing 6 mL of one-
tenth Murashige and Skoog (Murashige and Skoog, 1962) basal medium
without hormones or vitamins (Duchefa), adjusted to pH 7.0, and two layers
of 3MM filter paper under continuous light at 24°C.

Preparation of Plant Materials for Microscopy

For sectioned material, seeds were harvested at the following time points:
3 h of imbibition, testa rupture, and endosperm rupture. The testa was
punctured using a fine needle and the seeds immediately fixed in PEM buffer
(50 mM PIPES, 5 mM EGTA, and 5 mM MgSO4, pH 6.9) containing 4% (w/v)
paraformaldehyde under vacuum (1 h at room temperature). Seeds were
washed twice in phosphate-buffered saline (PBS; 0.01 M phosphate buffer,
0.0027 M potassium chloride, and 0.137 M sodium chloride, pH 7.4), dehy-
drated through a graded ethanol series, and then infiltrated with LR White
resin (London Resin Company) in a series consisting of 3:1, 2:1, 1:1, 1:2, and 1:3
(v/v) in absolute ethanol (1 3 24 h at 4°C) followed by 100% resin (3 3 24 h at
4°C). The samples were polymerized in gelatin capsules for 5 d at 37°C. Sec-
tions were cut to a thickness of 0.5 mm using a diamond knife on an Ultracut
microtome (Reichart-Jung), and sections were collected on multiwell slides
(ICN Biomedicals) coated with Vectabond reagent (Vector Laboratories).

For toluidine blue O staining, sections were incubated in a solution of 1%
(w/v) toluidine blue O containing 1% (w/v) sodium borate for 5 min, washed
in water (3 3 5 min), mounted in glycerol, and observed using an Olympus
BX61 microscope. Micrographs were taken using a Hamamatsu Orca 285
camera with Volocity 4 software (Perkin-Elmer).

Immunofluorescence Microscopy

For LM, JIM, and CCRC series antibodies, sections were incubated in PBS
containing 3% (w/v) milk protein (MP/PBS; Marvel, Premier Beverages) and
a 5-fold dilution of antibody hybridoma supernatant for 1 h. Samples were
washed in PBS (3 3 5 min) and incubated with a 100-fold dilution of anti-rat
IgG or anti-mouse IgG (whole molecule) linked to fluorescein isothiocyanate
(Sigma-Aldrich) in MP/PBS for 1 h in darkness. For CBM labeling, sections
were incubated in MP/PBS containing 10 mg mL21 CBM for 1 h. Samples were
washed in PBS (3 3 5 min) and incubated with a 1,000-fold dilution of mouse
anti-HIS (Sigma-Aldrich) for 1 h, washed in PBS (3 3 5 min), and then incu-
bated in a 100-fold dilution of anti-mouse IgG fluorescein isothiocyanate.
Following antibody or CBM labeling, the samples were washed in PBS (3 3 5
min) counterstained for 5 min with the fluorochrome Calcofluor White M2R
(fluorescent brightener 28; Sigma-Aldrich) at 0.25 mg mL21 in PBS, washed in
PBS (3 3 5 min), mounted in a PBS-based antifade solution (Citifluor AF3;
Agar Scientific), and observed using an Olympus BX61 microscope equipped
with epifluorescence irradiation. Micrographs were taken using a Hamamatsu
Orca 285 camera with Volocity 4 software.

For unmasking of cell wall polysaccharides, samples were treated with 0.1 M

sodium carbonate for 2 h at room temperature followed by 50 mg mL21 pectate
lyase (Pel10A; Brown et al., 2001) in 50 mM CAPS, 2 mM CaCl2 buffer, pH 10,
for 2 h at room temperature; 100 mg mL21 Bacillus spp. EBM (Megazyme In-
ternational) in 0.1 M Gly, pH 8.8, for 2 h at 37°C; 50 mg mL21 Aspergillus niger
a-L-arabinofuranosidase (Megazyme International) in 50 mM sodium acetate,
pH 4.0, for 2 h at 37°C; or 50 mg mL21 Clostridium thermocellum xyloglucanase
(NZYTech) in 50 mM sodium phosphate buffer, pH 7.0, for 2 h at 37°C, alone
or sequentially with washes between treatments.

All epifluorescence and light microscopy analyses were performed on at
least three seeds for each time point and treatment.

Monosaccharide Linkage Analysis

Three replicates of 40 Lepidium seeds and 80 tobacco seeds were dissected
after approximately 6 h of imbibition to separate endosperm and embryo
tissues. Tissue was snap frozen in liquid N2 and macerated using a TissueLyser
LT (Qiagen). Cell walls were prepared as described previously (Zablackis
et al., 1995). Linkage analysis was performed as described previously (Sims
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and Bacic, 1995). A complete description of the methods can be found in
Pettolino et al. (2012).

Germination Analyses

The different genotypeswere grown in a growth cell (16 h of light/8 h of dark)
set at 22°C and 70% humidity. Plants were grown on rockwool blocks (Grodan)
and placed on a flooding table, ensuring equal watering of all plants. Plants were
watered with Hyponex nutrient solution (1 g/L). For all lines, three to four
replicates (each consisting of a bulk three plants) were collected for germination
experiments and stored under identical conditions. Cell wall mutant germina-
tion phenotypes were confirmed with seeds from two independent harvests.

For germination tests, seeds were sown on two layers of blue filter paper
(Blue Blotter Paper; Anchor Paper Company) in transparent plastic trays (DBP
Plastics) with in total 49mL of deionizedwater. The plastic trays were piled and
wrapped in a plastic bag. Each pile contained two trays at the bottom and two
trays at the top with 25 mL of water to prevent unequal evaporation. The trays
were incubated in a germination cabinet (Snijders Scientific) set at 22°C with
continuous lighting. Trays were photographed at multiple time points after
imbibition. The images were used for automated scoring of germination using
the Germinator software package (Joosen et al., 2010; http://www.pph.wur.
nl/UK/seedlab/resources/germinator/). The data points were used to fit a
curve from which we determined germination speed (= T50; i.e. the time taken
for 50% of the seeds to germinate) (Joosen et al., 2010).

Puncture Force Measurements

Puncture force experiments were performed as described previously
(Müller et al., 2006) with a modified custom-made machine. Imbibed seeds
were split in half, the embryo fully removed, and the endospermic tissue
placed in a sample holder. A rounded metal pin was driven into the sample
while force and displacement were recorded simultaneously. For Lepidium, a
pin with 0.3-mm diameter was used and a speed of 0.7 mm min21. For to-
bacco, a 0.2-mm pin was used with a speed of 0.35 mm min21. The puncture
force was measured for Lepidium at two time points before (3 and 7 h) and
one after (14 h) testa rupture. Tobacco measurements were performed at two
time points before (3 and 12 h) and two after (36 and 72 h) testa rupture.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Cell wall epitope detection summary.

Supplemental Figure S2. Immunodetection of heteromannans in enzy-
matic deconstructed sections of Arabidopsis and Lepidium seeds and
in untreated section of tomato seeds.
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